
A HEAT METER OF FINITE THICKNESS 

A. I. Mikhailov and S. G. Platonova UDC 536.24.083 

The two-dimensional steady-state problem is solved for a heat meter of finite 
thickness. Corrections to the heat meter readings are estimated. 

Heat meters of various constructions for obtaining experimental information on heat 
flux densities are being more and more widely used not only in research, but also to monitor 
and regulate processes in very diverse fields of industry [i]. 

Unfortunately, any device for measuring heat flux perturbs the thermal state of the 
object being investigated, and the recorded heat flux qH differs from the unperturbed heat 
flux qo: 

= ~ ( T o - - T  ). 

Analysis of the thermal perturbation introduced by a heat meter and the derivation of 
the equation relating the recorded and unperturbed heat fluxes are of practical interest. 
Figure 1 shows a schematic diagram for the mathematical statement of the problem. The tem- 
perature of the medium is arbitrarily assumed equal to zero (T m = 0). In the absence of 
the heat meter the wall close to the surface has a plane one-dimensional temperature distri- 
bution 

71(z) = T O 1 + - ' ~ - -  z �9 

Upon insertion of the heat meter the temperature distribution of the wall is distorted and 
becomes two-dimensional. The heat-conduction equation has the form 

with the boundary conditions 

02T 1 OT d2T 

Or ~ r Or Oz a 
=0 

'OT2 =aT2,  z = - - ~ ,  r < R ,  (4 )  
Oz 

aT2 
- - 0 ,  - - 6 ~ z % 0 ,  r = P , ,  (5) 

Or 

Xl OT, = ~ T t ,  z = O, r > R,  
Oz 

OT2 = ~,i OTi 
' Oz ~ , z = O , r < R ,  (7) 

T 2 = T , ,  z = O ,  r < R .  

The solution of such a steady-state problem presents certain difficulties. The main dif- 
ficulty is that in the Or plane different boundary conditions (6)-(8) are specified along a 
ray. There is no general theory for such mixed problems [2, 3]. By using the Fourier method 
the following general expression is obtained for the temperature T2(z, r) of the heat meter: 
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Fig. I. 

r \ 

Mathematical statement 
of problem. 

T2 (z, r) = .--o A~Jo (~nr) ch ~tn (z A- 8) q- ~zit n 

Here ~n----?,IR (n = 0, I, 2...), and the Yn are the roots of the equation 

Jl ('~.) = 0. 

The heat flux recorded by the heat meter is 

T, (0) -- Tu (-- 8) ~: 
qH= /I 

T~(z) is the average temperature over the cross section of the heat meter, 

R 2~ 

T~ (z) = n..R2- T,rdr d~ = - -~  A o 1 + --~ (z -4- 6) --{-- -}- 
0 0 

_ r  sh tan (z ~- 6) Jo (t~nr) rdr  = A o -4- An Oh.B= (z -b ~t) q- %z/a= 
0 

o ] I +-~ ( z + 8 )  

R 

Since f Jo (~n r) rdr = 0 �9 
0 

Then 

(9) 

(i0) 

(ii) 

qH=Ao--~- 1 q- %z 

The value of Ao can be found by solving the problem for the wall, using boundary conditions 
(6), (7), and (8). It is easily verified that the general solution of the heat-conduction 
equation (3) for the wall which is bounded at r = 0 is 

co 

Ti (r, z) = To 1 q- ~ z q- exp (-- ~xz) Jo (~r) f (j~) dlx. (14) 
0 

Here an integral over ~ appears instead of a sum over ~n, since the spectrum of eigenvalues 
for an infinite region is continuous. Instead Of the coefficients A n there is the unknown 
function f(~). The solution (114)must ,satisfy the boundary conditions (6), (1), and (81). 
Since 
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aTi (z = o) = To -- ~4 (~r) f (}t) drt; 
0 

r~ (z = O) = To + i do (~r) ~ (@ a~; 
0 

[ +h,.,]; T~ (z = O) = AnJo (~tnr) ch (1~,~) + ~1~ 

0o 

[ ~ ch,.,] aT,._az (z = o) = ~,~A,do (}~r) sh (1~,,~) + ~.zrt,, 

the boundary conditions (6), (7), and (8) can be rewritten in the form 

f do(pr)(~-q-F+)f(~)dtt=O, r > R ;  
0 

(15) 

o'o @r) f (e) dt~ = - -  To + A.4  (l+~r) ch (1~,,~) + ~%~,, 
,'t--O 0 

Combining (16) and (17) we obtain 

r < R ;  

From Eqs. 

, r<R. 

A n  4(~r) ~ + ~  (i,)a~=-~ x2~ 
0 ----- 

(15) and (18) we have 

0 

~_~L2.) do(ttr~r)sh(~,fi) ' r < R .  

= F(r); 

( i6)  

(17) 

(z8) 

(!9) 

F (r) = 

~ B . d o  (~r); r < R; 
n=O 

O; r > R; 

O~ 

z - 7 + ~  
P 

a ( = p.X2)sh(v~8)A~; B~ = ~ , ~,2~ ~z 

Bo = Bi~ ~ Ao (~o = 0). 

(20) 

(21a) 

(~:ib) 

Equation (19) represents the Hankel transform of ~ (V). Using the inversion formula for 
this transform [4] we obtain 
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q~ (la) -- F (0 Jo (~tr) rdr = B,~ j" Jo (~t~r) Jo (W) rdr. (22) 
O n=0 0 

Evaluating the integrals of the product of Bessel functions over a finite interval, we have 

[5] 

n=O n=0 

(23) 

~2~ ~ ~2 __ ~ �9 

This relation expresses the unknown function ~(~) in terms of the unknown coefficients An. 
However, bY using (23) and boundary conditions (16) and (17) a relation among the various 
coefficients A n can be obtained. We are interested in only the coefficient Ao, since the 
heat flux measured by the heat meter is expressed in terms of it. We rewrite boundary con- 

dition (16) in the form 

% a ;~z E t ,Jo (~r) [ (~t) dlx = ~ (To - -  Ao) 
�9 t ?~ l  
0 

[ ~ ] AnJo (btnr) P~n sh (~tnS) --}- --~ ch (btnS) 

and integrate (24) with respect to r from 0 to R using the formula 

(2~) 

R' 

I Jo(~)rclr= R J~(DR). 
, 

o 

$s J,(~nR)=0, o~ly the coefficient rAorema~ns on the right-hand side of (24) after 

integration: 

2 i Jf(~tR) f Or) dp. (25) Ao = To" Bii 
0 

Using Eqs. (21a) and (23) for [ ( M ) = -  
.,P (.) 

, we obtain 

Ao. = T o - -  2 A~ r 
n=O " - - - +  o ~,~ 

- -  J~ (MR)(I)n (~)dff. ( 2 6 )  

We multiply both sides of Eq. (24) by Jo(~nr) and integrate with respect to r over the same 

limits, using the formulas given in [5]: 

R 
S ~tR 

Jo Otr)Jo (~r)rdr = ~2_ ~ A (~R) Jo (~R>, 
0 

R 

j' Jo (~tmr) Jo (Fmr) rdr = 0  -(~m.=~ [~); 
0 

R 

J~ (~r) rdr R2 ~ = 

0 
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We obtain for A n (n = I, 2, ...) the expression 

2 

RJo ([xnR) ch (~,~6) -5 s 

• i ~td~t j,(pR)[(~)= 2Bi~ x 
o RJo (~nR) ch (~n6) -5 s 

i ~tSd~tJ~(~tR) 
x /~  ) A~@m(p~). 

@ -  ~) t ~ + ~ = o  

{27) 

In integrals (26) and (27) we change to the dimensionless variable x = ~R. Using the 
notation ~n R = Yn, where the Yn are the roots of the equation J~(Yn) = 0, we obtain 

An = 

We write 

Ao = T o -  2 S i x2j~ (x) dx 
.=o A~T= (Bi, + x) (x z --'~2) ; 

0 

2Bi, 

Jo (?,0 [ch(',/.[3)-5 Bi~,?,~ sh(Tn~)] 2 2 2 A m T ~  (Bi i  -5 x) (x 9 - -  ? . )  (x - -  Ym) 
m = O  0 

, .  = 4 6,.) sh (,,'.~) (. v~2 

Ao = To -- ~ C=I=; 
,'t=O 

(28) 

(n = 1, 2, 3 . . . .  ); 

(29) 

(30) 

Cn =ean ~ Cmlmn, n=#:O; 
m=O (31) 

/ Bi~ C. = | \ ?n 

3 ' ,*)  
Bi~ Jo (?n) sh (?n[~) A,~; 

Co = Bi~l~Ao = BizAo; 

x~J~ (x) dx . i S~ (x)ax 
In ------ 2 (Bi i  -5 x) (x z - -  %,~) ' I~ = 2 O ~-~-~.~ 

0 0 

(Bil + x) (x z - -  ?2) (x 2 - -  y~) ' 

i xJ~ (x) dx . 
Ion = 2 (Bii  -5 x) (x 2 - -  %,~) ' 

0 

(31a) 

(31b) 

(.32) 
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= - -  ; an = �9 (33) 

The integrals for I n and Imn have no singularities at x = ~n or x = Ym, since as x + Tn, 
Jx(x) ~ x 2 2 [5]. Equations (28) (29) or (30), (_31) form an infinite system of algebraic T n 

equations. The theory of infinite systems of equations is not yet in final form, but methods 
for obtaining approximate solutions of such equations are developed in considerable detail 
in [6], In general these methods lead to lengthy cumbersome calculations, but if there is a 
small parameter in the problem, the solution of such a system can be written as a series in 
this parameter. 

We solve the problem by assuming that the coefficient e in Eq. (31) is such a small 
parameter. We transform Eqs. (30) and (.31) to a form convenient for iterations: 

Ao = To--Co~- ~ C.l,, (.34) 
n: I 

C,~ = re.Colo.  + ca .  ~, Cmlm,. n ~ O. (35) 
m =  1 

iterating Eq. (35) we obtain 

- 

m = l  m = l  k = l  
a~lokl~m ) Iron + . . . .  eCoa,Fn; (36) 

e+ = + ,  ,,#0.i,,,. + Z + . . .  
m ~ l  m,,k 

S u b s t i t u t i n g  (36) i n t o  (34) and u s i n g  (36b),  we o b t a i n  

Ao = To - -  Colo - -  eCo ~ ar, F.I,~ = To - -  Bi~Ao [lo + sXP']; 
t't----- 1 

(36a) 

(37) 

= 2_~ anFnl~; Ao [1 + B~(lo q- exit)] = To. (38) 
a = l  

The distorted heat flux indicated by the heat meter is qH = ~Ao, and the heat flux in the 
absence of the heat meter (undiStorted heat flux) is qo = eTo~ Therefore, Eq. (38) relates 
the value of the undistorted heat flux to the reading of the heat meter and provides the 
necessary correction to be applied to the instrument reading to obtain the value of the 

undistorted flux: 

q0 = qH[l Jr Bi,(10 q-e~)l. (139) 

Thus, the solution is given in the form of an infinite sum, but these sums converge rather 

rapidly. Actually 

' F - - - - ~ a n l n F , , ~ , 2 a n l r ,  lor,. 
r l~ l  I'1=1 

For large 7 n the quantities an"--?n, In~'l/?~, and /0n-~l~, and therefore the n-th term 
of the series is of order i/y~+ Actually it turns out to he sufficient to retain only two 
or three terms of the series. Taking only two terms approximates the sum to within 5%. 

NOTATION 

qo, unperturbed heat flux; qH, heat flux recorded by heat meter; =, heat-transfer coef- 
ficient; X, thermal conductivity; 5, thickness of heat meter; R, radius of heat meter; 8 = 
6/R; Bi~ = ~R/X~; Bi= = ~/X2; Bi~ = ~R/X~; Jo, J r ,  zero- and first-order Bessel functious, 
respeetively; Tt, T=, temperature distributions of semi-infinite wall and heat meter, res- 
pectively; To, temperature distribution of wall in the absence of heat meter. 
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MASS TRANSFER IN EVACUATION OF MATERIALS WITH LARGE OUTGASSING 

M. G. Kaganer and Yu. N. Fetisov UDC 536.021 

Non-steady-state mass transfer in materials with large outgassing, used for the 
heat insulation of cryogenic vessels, was investigated experimentally and theo- 
retically. 

Materials used for vacuum-multilayered insulation (VMI) of cryogenic vessels have an 
extended surface and, consequently, large outgassing in vacuum. The required vacuum in the 
insulation cavity of the vessels is maintained with the aid of adsorbents which also liberate 
a large amount of gases during the initial evacuation. All this leads to a substantial ex- 
tension of the time of evacuation, which sometimes attains more than i00 h. 

The outgassing of various materials for VMI was measured by the authors of [1-4]. The 
experimental data obtained by different authors for the same materials differ, sometimes one 
being a multiple of the other. The object of the present work is to find the causes of 
these discrepancies and to work out a method of calculating the process of evacuation on the 
basis of its theoretical and experimental investigation. 

The equation of non-steady-state mass transfer in the diffusion of a sorbed gas with a 
linear adsorption isotherm in a plane layer of porous material has the form [5] 

Oc =D~ O~c , (1)  
Oz Ox ~ 

The effective diffusion coefficient D e = D/(I + H), when H is the Henry law constant 
characterizing the slope of the adsorption isotherm, is 

d a  ==H dc. (2) 

The absorption per unit mass of the sorbent is 

H 
da---- - -  dc. 

P 

S i n c e  t h e  gas  p r e s s u r e  i s  p r o p o r t i o n a l  t o  t h e  c o n c e n t r a t i o n ,  Eq. (.1) may be  r e p l a c e d  by 

O p : D~ 02P 
O~ Ox 2 

(12") 

(3) 

Some authors (e.g., Mikhal'chenko and Pershin [6]) veiw the process of evacuation of 
the insulation as a diffusion process with distributed sources of outgassing, with the 
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